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Abstract

The geometrical locus defined by the initial location of the fragments that are recovered from an extraction point in underground

mining, after a given operation, is commonly named ‘‘drawbody’’. A brief review of drawbody shapes in flat-bottomed hoppers is

proposed. The Bergmark–Roos hypothesis is discussed and it is shown that when the continuity equation is considered, particle density

increases with time and when moving toward the hopper aperture. Drawbody shapes are calculated for flows predicted from a plasticity

approach, as well as from a kinematic model. Applications to complex configurations in which the flow is produced by two drawpoints,

either in simultaneous or sequential extractions, are discussed in some detail. In particular, the extracted zone is calculated exactly and its

dependence on distance between drawpoints is investigated. The knowledge of such locus should prove valuable when optimizing ore

recovery in mining processes.

r 2006 Published by Elsevier Ltd.
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1. Introduction

The relatively poor understanding of granular flows and
ore extraction from a caving rock mass is currently an area
of concern in industry and research. The importance of
gravity flows, the related open problems as well as the
approaches available for mining applications have been
recently discussed by several authors, for instance Brown
[1] and Rustan, [2]. As pointed out by these authors, the
lack of analytical formulations to account for the relevant
parameters involved in optimizing ore recovery implies a
high degree of reliance on computer modeling. However,
most of the computational models available to describe
industrial granular flows are not necessarily based on the
first principles of mechanics and therefore cannot be
qualified by reference to canonical verification problems.
Most experimental efforts have been focused on the
e front matter r 2006 Published by Elsevier Ltd.
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prediction of the initial locus of the material that is
extracted from a single aperture. Such a locus is named the
‘‘drawbody’’ or isolated extracted zone (IEZ) and depends
mainly on the volume of the extracted material. However,
little progress has been achieved in predicting the IEZ from
first principles. To date, the mathematical equation that
best describes the shape of the extraction drawbody is the
Bergmark–Roos equation (see Refs. [3,4] for a recent
review). In addition, due to the lack of both analytical
models and reliable experimental data, the flow resulting
from interactions of several drawpoints is completely
unknown. Thus, in this complex situation, the locus of
extracted material is roughly estimated by the elementary
geometrical superposition of IEZs produced by the
drawpoints under study. A precise knowledge of the
extracted zone in complex combinations of drawpoints is
however crucial to optimize ore recovery in underground
mining when applying the well-known ‘‘block caving
method’’ [1]. A sketch of the common geometry used in
block caving is presented in Fig. 1. In this method, a large
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Fig. 1. Schematic distribution of drawpoints employed in the block caving

method. Vertical and horizontal cuts intend to show the main geometrical

features of the hoppers used in underground mining. The roughly

ellipsoidal shapes on top of several hoppers mimic the IEZs.

Fig. 2. Schema of the polar coordinate system and drawpoint parameters

used here for the Bergmark–Roos derivation of IEZ. Angles are measured

from the vertical and with this choice of the origin the aperture locates at a

distance rD.
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number of hoppers are organized in a periodic lattice in
which the geometry and distance between neighbors intend
to optimize the global extraction process. Besides the size
of hopper apertures and the distance between hoppers, an
important parameter is the average size of granulates which
might strongly influence the average size of the IEZ. In
turn, the geometry of the IEZ tells us to what extent any
two neighboring IEZs might interact.

In the present article, we first briefly discuss the
hypothesis made for the determination of IEZ in the
Bergmark–Roos formulation. We show that the velocity
field used in the original derivation leads to an important
density increase as the fragments approach the hopper
aperture. This effect is the source of the relatively elongated
shape of the drawbody in the Bergmark–Roos approxima-
tion. To check the sensitivity of these results on the
particular choice of the form of the flow, we calculate the
isolated ‘‘drawbody’’ for velocity fields derived from
plasticity theory for granular materials [5]. We show that,
with this approximation, the drawbody is rather insensitive
to the particular choice of the angular dependence of the
flow. However, radial dependence, which insures constant
mass density, is more critical since it produces ‘‘drawbody’’
shapes that are lower and therefore wider than the ones
predicted by the Bergmark–Roos approximation. In the
last section, we apply the kinematic model to calculate
‘‘streamlines’’ and isolated ‘‘drawbodies’’ for several simple
configurations. We exploit as well the linearity of the
kinematic model to provide insight into flows and extracted
zones produced by the simultaneous contribution of two
drawpoints. We finally use the plasticity model to illustrate
the form of an extracted zone resulting from sequential
extraction occurring at two neighboring drawpoints. A brief
discussion is proposed in the concluding section on possible
strategies to calculate complex streamlines and shapes of
extracted zones by the use of the superposition principle.
2. Bergmark–Roos review

As stated in Ref. [2], it is well accepted that the
Bergmark–Roos theory, which was a paradigm shift in
the science of gravity flow, is today probably the best
mathematical theory for calculating the drawbody for a
homogeneous material or when we wish to estimate the
mean drawbody shape for a large number of draws. To
better understand the physical basis on which this theory is
sustained we present, in this section, a brief review of the
underlying analysis leading to Bergmark–Roos drawbody
shape.
The main hypothesis employed during the development

of the Bergmark–Roos formulation, as discussed in Ref.
[4], is that fragments move in straight lines from their
resting point to the opening where they are removed
continuously. Another important assumption of the model
is that the fragments are influenced solely by two opposite
forces, namely the gravitational force and the friction force
due to the interaction with the surrounding fragments.
Defining the angular coordinate y, with respect to the
vertical, the gravity force is �mg cos y, with m being the
mass of a fragment and g the gravity acceleration.
In the Bergmark–Roos derivation, it is also assumed that

the acceleration of a single granulate is constant during the
entire movement. From the force balance, the acceleration
reads, arðyÞ ¼ gðcos y� cos yGÞ, for jyjpyG, where yG is the
maximum allowed angle for displacement i.e., the angle at
which the friction force equals particle weight,
mg cos yG ¼ F f , with F f being the friction force [4]. With
our definitions, the aperture has a width 2D ¼ 2rD sin yG

and is located at a distance rD from the origin of the polar
coordinates, as indicated in Fig. 2. Notice that with this
choice of coordinates, the acceleration is negative, thus
arðyÞ ¼ j � gðcos y� cos yGÞj.
In addition, in this approximation, initially all the

particles are assumed to be at rest. Thus, the velocity field
is, V r ¼ �arðyÞt and Vy ¼ 0. By integrating the radial
speed in time, the radial location of particles reads,
rðy; tÞ ¼ r0ðyÞ � 1

2
arðyÞt2, where r0ðyÞ ¼ rðy; t ¼ 0Þ is the

initial location of the particles that are found at position
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rðy; tÞ after a time t. Thus, the drawbody, defined as the
initial location of the particles that cross the aperture at a
given time t, rðy; tÞ ¼ rD, is given as, r0ðy; tÞ ¼ rD þ

1
2

arðyÞt2,
which, in terms of its maximum height, rmax, occurring at
y ¼ 0, reads,

r0ðy; rmaxÞ � rD ¼ ðrmax � rDÞ
cos y� cos yG

1� cos yG

, (1)

where rmax ¼ rD þ ðgt2=2Þð1� cos yGÞ.
We now verify to what extent the velocity field in

Eulerian coordinates derived from Bergmark–Roos as-
sumptions respects local mass conservation. For simplicity,
we first analyze the two-dimensional case in which the
continuity equation reads

qr
qt
þ

1

r

qðrrV rÞ

qr
¼ 0, (2)

where r is the local material density. Notice that r must be
a function of space and time, otherwise, the continuity
equation is not obeyed. The general solution is,
rðr; tÞ ¼ f ðrþ arðyÞt2=2Þ=r, where f is a function to be
determined by the initial density of the material. If the
density is initially constant, r ¼ ri, then f ¼ rir in t ¼ 0.
The general evolution of such homogeneous density is thus,
r ¼ rið1þ arðyÞt2=2rÞ, which can be written simply as,
r ¼ rir0r=r, where r0r is the position at t ¼ 0 of the particle
located at position r at time t. Thus, if particles do not
move, no density variation occurs. However, a volume
element traveling down experiences a density increase that
is a function of its path length.

To check the consistency of the results presented above,
the total section S0 of the drawbody can be calculated by
integrating the mass flow passing through the aperture as
follows:

S0 ¼ �

Z yG

�yG

Z t

0

rðrD; t0Þ

ri

VrrDdydt0, (3)

which can be written,

S0 ¼

Z yG

�yG

Z t

0

r0ðy; t0ÞaðyÞt0 dydt0 ¼

Z yG

�yG

Z t

0

1

2

dr20ðy; t
0Þ

dt0
dydt0.

(4)

Once integrated in time, the latter becomes the known
formula for the drawbody section

S0 ¼

Z yG

�yG

1

2
ðr20ðy; tÞ � r2DÞdy, (5)

which can be integrated to express the rmax in terms of S0.
This is,

S0 ¼
rmax � rD

1� cos yG

� �
2rDðsin yG � yG cos yGÞ
�

�
rmax � rD

1� cos yG

� �
ð3 sin yG cos yG � 2yG cos2 yG � yGÞ

�
.

ð6Þ
The same analysis can be carried out in the three-
dimensional configuration. The respective continuity equa-
tion reads

qr
qt
þ

1

r2
qðr2rV rÞ

qr
¼ 0, (7)

whose solution is rðr; tÞ ¼ f ðrþ arðyÞt2=2Þ=r2. Here, f is a
function to be determined from the initial density of the
material. Thus, if the density is initially constant, r ¼ ri,
then f ¼ rir

2 at t ¼ 0. The general evolution of such
homogeneous density is then, r ¼ ðri=r2Þðrþ arðyÞt2=2Þ

2.
Again, as in the two-dimensional case, an curious increase
of density of the material occurs as time progresses.
To complete our discussion, we derive the drawbody

shape as a function of its height, rmax ¼ rDþ

ðgt2=2Þð1� cos yGÞ, and a finite hopper aperture of radius
rD sin yG. As before, the aperture is located at a distance rD

from the origin of the spherical coordinates. Expressing the
time dependence as a function of angular and radial
variables, we obtain,

r0ðy; rmaxÞ � rD ¼ ðrmax � rDÞ
cos y� cos yG

1� cos yG

. (8)

After a calculation similar to the one of the drawbody
section in two dimensions, the drawbody volume O0 reads

O0 ¼
p
6
ð1� cos yGÞ½r

3
max � 3r3D þ r2maxrD þ rmaxr2D�, (9)

which, in the limit of rmaxbrD, becomes

O0 ¼
p
6

r3maxð1� cos yGÞ. (10)

This is the Bergmark–Roos formula for an isolated
drawbody [4], expressed in terms of the angular variables
used here. Notice that, to calculate the drawbody shape as
a function of the extracted volume O0 and the hopper
aperture rD, the third order algebraic Eq. (9) must be
solved. This allows one to obtain rmax expressed in terms of
the desired variables. The appropriate solution, although
algebraically complex, can be found easily.
In summary, the analysis presented above shows that the

Bergmark–Roos theory for drawbody is unphysical since it
involves a strong density increase as the granular material
approaches the hopper aperture. However, it is not
surprising that, in many cases, this theory predicts the
approximate observed shapes of the drawbody, since mass
is globally conserved through the volume of interest. To
further investigate this last point, in the following, we
calculate drawbody shapes deduced from plasticity models
for granulate flows and we show that these shapes have the
same general features than that obtained from Bergmark–
Roos prediction.

3. Plasticity theory for granular flows

In general, flows in granular materials are described by
hydrodynamical type of models whenever the characteristic
size of the container is much larger than the particle size,
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Fig. 3. Drawbody for the Bergmark–Roos theory Eq. (8) in contrast to

the one obtained from the plasticity model from Eqs. (13) and (17) for

equal volume. Here, yG ¼ 35�, rD ¼ 1, rmax ¼ 17. Notice that rmax here

refers to Bergmark–Roos and all distances are in arbitrary units of length.
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since under this condition it is expected that velocity and
force fluctuations would be much smaller than the average
values. The commonest coarse grained approach for the
predictions of velocity distribution in granular materials is
based on plasticity theory. In these models, that are
described in detail in Ref. [5], the stress distribution in the
static material is first calculated and from this the velocity
distribution is obtained. Although, little progress has been
achieved for the prediction of velocity fields in specific
cases, plasticity theory provides more realistic predictions
for granular flows in hoppers. Thus, we consider it
interesting to derive the shape of the drawbody for such
fields. In three-dimensional flows, the azimuthal and radial
field are not known precisely as they are functions of
geometrical variables and particle features. However, in
gravity flows for axis symmetric situations, it is a good
approximation to consider that the azimuthal velocity
vanishes [5]. To insure incompressibility, a 1=r2 dependence
must be included for the radial velocity, which is written as

Vr ¼
�V 0r

2
D

r2
f ðy;fÞ, (11)

where y is the angular coordinate measured from the
vertical, rD is the radial position of the aperture of radius
rD sinf and V 0 is the speed at the middle of the aperture.
For conical hoppers, f ¼ yW and f ðy;fÞ is selected to
respect the boundary conditions imposed at the hopper
lateral walls which are, in turn, functions of wall friction.
Although for flat-bottomed hoppers the radial approxima-
tion is less clear, we will use it here only to make
comparison with the flow introduced in the previous
section. Thus, for flat-bottomed hoppers f should be equal
to yG and f must vanish at the sliding internal angle yG, i.e.,
f ðy ¼ yGÞ ¼ 0. Experimentally, it has been shown in a
variety of hoppers that the two-dimensional flow can be
represented by a radial velocity field as,
Vr ¼ ð�V 0rD=rÞ cos py=2yG. As a generalization of these
results, let us first consider, f ðy; yGÞ ¼ cos py=2yG, vanish-
ing at y ¼ �yG, for the three-dimensional case. Then, the
radial speed can be expressed as

Vr ¼
�V 0r

2
D

r2
cos

py
2yG

. (12)

Writing dr=dt ¼ Vr, the particle trajectories are obtained
and, with them, the drawbody reads

r30ðyÞ � r3D
r3max � r3D

¼ cos
py
2yG

, (13)

where rmax is the drawbody height located at y ¼ 0. rmax

can be related to the total extracted volume as follows:

O0 ¼
2p
3

r3max � r3D

ðp=2yGÞ
2
� 1

 !
p

2yG

sin yG � 1

� �
. (14)

The drawbody shape obtained from Eq. (13) is represented
in Fig. 3. Before going into detailed comparisons, let us
assume the same angular dependence of the radial speed as
that introduced by Bergmark–Ross. Thus, f ðy;f ¼ yGÞ ¼

cos y� cos yG and the radial field now reads

Vr ¼
�V 0r

2
D

r2
ðcos y� cos yGÞ. (15)

With this choice, the streamlines remain radial and particle
trajectories are described by

r0ðyÞ
3
� r3D ¼ 3r2DV0tðcos y� cos yGÞ. (16)

Writing the time t as a function of rmax, the drawbody
shape becomes

r30ðyÞ � r3D
r3max � r3D

¼
cos y� cos yG

1� cos yG

, (17)

where r3max ¼ r3D þ 3r2DV 0tð1� cos yGÞ is obtained from the
total mass conservation, i.e., the drawbody volume equals
the total extracted material to date t

O0 ¼
p
3
½r3max � r3D�

cos2yG � 2 cos yG þ 1

ð1� cos yGÞ
. (18)

In Fig. 3 the drawbody shape predicted by the Bergmark–
Roos approximation is contrasted to the ones obtained
from plasticity models Eqs. (13) and (17). First, it is seen
that the drawbody shape predicted by plasticity models is
rather insensitive to the form of the function f ðyÞ selected.
The value of yG is, however, more critical as relatively little
variation in this quantity produces notable changes in rmax.
Thus, in all cases, care must be taken to determine the
suitable value of yG. Secondly, the Bergmark–Roos draw-
body is notably taller than that predicted by plasticity
flows. This is because the Bergmark–Roos flow does not
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respect incompressibility, since it was shown in a previous
section that the material density increases toward the
hopper aperture as time progresses. In other words, the
resulting radial speed of fragments is overestimated in
regions where their effective acceleration is large. Thus, for
a given time, particles located at comparatively larger
distances along the vertical can reach the aperture, giving
rise to more elongated shapes.

4. Kinematic model

In the present section, we first comment on a few aspects
of the kinematic model that are important to establish the
validity of the drawbody shapes we derive.

In early works, Mullins [6] proposes an alternative
approach to the predictions of velocity distributions by
modeling the flow as the upward diffusion of voids by
random processes. The validity of this model, better known
as diffusive, is not obvious since it is not derived from force
balance equations. Similar ideas are developed by Litwi-
niszyn [7], who considers that the particles are confined to a
series of hypothetical cages. When a particle falls out of a
cage, it can be replaced by those particles located just
above, with equal probability. Thus, the probability P, of a
particle being in motion, is given by the solution of a
diffusion equation, qyP ¼ DPqxxP. DP is a diffusion
coefficient which is proportional to particle diameter d,
DP�d=8. As shown in [7], P is proportional to the particle
displacements which, provided they are not too large, will
be related to the vertical velocity v. This last assumption is,
however, a subject of debate. To overcome this difficulty,
Nedderman and Tüzün [8] developed a model in which the
particles immediately above the orifice fall out of the
hopper and the particles above the layer slide into the
vacant space. Similarly, the next layer slips into the newly
created space. For this process, it is assumed that the
weight of each particle is enough to cause the motion which
is unaffected by any stress in the system, hence this model is
purely kinematic. Basically, if two particles in the lower
layer have different velocities, there will be a tendency for
the particle just above to move laterally in the direction of
the fastest falling particle. Thus, it is expected that
U ¼ �DpqxV , where U and V are the horizontal and
vertical velocities, respectively. Using mass conservation, it
is easy to find, qyV ¼ DPqxxV . The same authors have
shown that the kinematic model is very successful to
describe velocity distribution in rectangular hoppers under
stationary conditions and when the material is not compact
[8]. Recent works [9,10] have confirmed these findings
showing that the streamlines are correctly predicted by
kinematic models for loose packing preparations. How-
ever, when the material in the hopper is in a nearly compact
state, the agreement becomes poor [11], since when a
densely packed material begins to flow, dilation takes place
in the vicinity of the initial failure surface; a front of
dilation propagates upwards producing cumulative errors
in the fragmentdisplacement [12]. Naturally, these devia-
tions increase with height. A last remark is that the
kinematic description developed in [8] does not include
dynamic considerations, hence it requires precise knowl-
edge of the speed distribution at the hopper aperture. This
is the kind of information that can only be provided by a
real dynamic analysis or detailed experimental observa-
tions. In addition, shear bands found in particular
configurations of silos and hoppers are reminiscent of a
solid–liquid transition-like behavior and cannot be cap-
tured by this kind of approach [5]. Thus, in this section we
only consider flows in flat-bottomed hoppers containing
granular material that is loosely packed.
In the three-dimensional configuration, the kinematic

model hypothesizes [8]

Vx ¼ �DP

qVz

qx
(19)

and

Vy ¼ �DP

qV z

qy
. (20)

From the condition of constant density, which is,

qVx

qx
þ

qVy

qy
þ

qV z

qz
¼ 0, (21)

the equation for the vertical velocity becomes

qVz

qz
¼ DP

q2V x

qx2
þ

q2Vy

qy2

" #
. (22)

4.1. Streamlines and drawbody in two dimensions for narrow

aperture

The aim of this subsection is to determine the exact
shape of the drawbody as well as the streamlines, in the
workframe of the kinematic model for the simplest
configuration. In two-dimensional flows, the streamlines
obey the following equation:

dx

Vx

¼
dy

V y

, (23)

where the y-axis is oriented along the vertical. The
kinematic model reduces to qV y=qy ¼ DPq

2V y=qx2 and
Vx ¼ �DPqVy=qx in two dimensions, which in the case of
an infinitely narrow aperture accept as solution:

V y ¼
�Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDPy
p exp �

x2

4DPy

� �
,

Vx ¼
�Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDPy
p exp �

x2

4DPy

� �
x

2y
, ð24Þ

where Q is the sectional flow rate, i.e., section of extracted
granular material per unit of time. Thus, the equation for
streamlines reads

dx

dy
¼

x

2y
, (25)
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whose solution is given by

y ¼ cx2, (26)

where c is a constant along a given streamline. At this point
we note that streamlines have been measured accurately by
Caram and Hong [9] in a quasi-two-dimensional config-
uration and excellent agreement has been obtained for the
diffusive model.

Following our program to calculate the drawbody zone,
it is first necessary to find the particles pathlines. Since a
particle under consideration is moving with the fluid at its
local velocity, pathlines must satisfy the equations

dx

dt
¼

�Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDPy
p exp �

x2

4DPy

� �
x

2y
,

dy

dt
¼

�Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDPy
p exp �

x2

4DPy

� �
. ð27Þ

Using the streamline solution and integrating one of the
above equations, we find

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pc3DP

p
3

ðx3
0 � x3Þ exp

1

4cDP

� �
¼ Qt (28)

or equivalently,

4
ffiffiffiffiffiffiffiffiffi
pDP

p

3
ðy

3=2
0 � y3=2Þ exp

1

4cDP

� �
¼ Qt, (29)

where x0 and y0 are the coordinates of a particle at t ¼ 0.
Remembering that c is a constant that labels all the
streamlines, the above equations allow following all
particle trajectories as a function of time.

Now, the drawbody is just the location at t ¼ 0 of the
particles that, at a given time t, cross the aperture, which is,

4

3

ffiffiffiffiffiffiffiffiffi
pDP

p
exp

x2
0

4DPy0

� �
y
3=2
0 ¼ Qt, (30)

which allows calculating the drawbody y0 ¼ y0ðx0; tÞ for a
given time t, at the extraction rate Q. The drawbody shape
can be calculated numerically without difficulty. Let us
now calculate analytically its maximum height ymax

0 and its
maximum width, wmax

0 ¼ xþ0 � x�0 occurring at y ¼ y�0,
where x�0 are the coordinates of the points defining the
largest horizontal distance of the drawbody. The maximum
height is located at x0 ¼ 0 and reads

ymax
0 ¼

3Qt

2
ffiffiffiffiffiffiffiffiffiffiffiffi
4pDP

p

� �2=3

. (31)

The maximum width is obtained from the condition,
dx0=dy0jy�0

¼ 0, which produces

x�0
2

y�0
¼ 6DP, (32)

where y�0 is given by, y�0 ¼ ð1=eÞð3Qt=2
ffiffiffiffiffiffiffiffiffiffiffiffi
4pDP

p
Þ
2=3.

Since the calculations above are performed for an
infinitely narrow hopper aperture, the drawbody shape
obtained is valid when its width is large compared to the
aperture size.
4.2. Drawbodies in three dimensions: infinitely small

symmetric apertures

A similar calculation to the above can be performed for
the three-dimensional case by just remembering that the
velocity field is the solution to the diffusion equation (22),
which in the case of cylindrical symmetry, reads,

qVz

qz
¼ DP

1

r

q
qr

r
qVz

qr

� �� �
. (33)

In the case of a small circular aperture, it accepts as a
solution

Vz ¼
�Q

4pDPz
exp �

r2

4DPz

� �
, (34)

where we have used polar coordinates ðr; yÞ in the plane
ðx; yÞ and z as the vertical axis. The streamlines are easily
calculated and, as before, we find parabolic shapes, z ¼ cr2.
With this, the form of the drawbody is given implicitly by

2pDP exp
r20

4DPz0

� �
z20 ¼ Qt, (35)

which allows calculating z0 ¼ z0ðr0; tÞ as a function of time
t and the extraction rate Q (Fig. 4). Notice that here Q is a
volumetric flow rate. We now calculate the drawbody
maximum height zmax

0 , and its maximum width,
wmax
0 ¼ 2rmax

0 . The maximum height located at r0 ¼ 0 reads

zmax
0 ¼

Qt

2pDP

� �1=2

. (36)

As before, the maximum width is obtained from the
condition, dr0=dx0jz�

0
¼ 0, which produces

rmax
0

2

z�0
¼ 8DP, (37)

where z�0 is given as z�0 ¼ ð1=eÞðQt=2pDPÞ
1=2.
4.3. Drawbodies in three dimensions: finite size apertures

The case of a finite size aperture is of major interest for
more realistic applications. Unfortunately, the solution for
the streamlines cannot be found in a compact formula,
hence we solve it here numerically. The general form for
the vertical velocity distribution in this case can be found in
Chapter 8, p. 250 in Ref. [5], therefore, we do not repeat it
here. The notation is equal to that used in [5], the orifice
radius is b and the box size is a, except that the diffusion
coefficient here is named DP. Streamlines can be found [5]
by numerically integrating the speed with a fourth order
Runge–Kutta method. Fig. 5 illustrates the results for the
extraction zone for several maximum heights of the
drawbody. The effect of the orifice size is clearly observed
and the drawbody width, in this case, is given approxima-
tively by w0 � 2ðbþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DPzmax

0

p
Þ.
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Fig. 4. Solid lines represent the drawbodies calculated from Eq. (35) as a

function of the total amount of extracted material, Qt ¼ 75, 210, 390, 580

expressed in units of D2
P, where DP ¼ 1, in arbitrary units of length.

Fig. 5. The drawbody and the streamlines for an isolated aperture in three

dimensions. Parameters are: the diffusion coefficient DP ¼ 0:5, the

aperture radius b ¼ 2, the box size a ¼ 20b and the maximum height of

the drawbody zmax
0 =b ¼ 15; 22; 31; 39. All these quantities are given in

arbitrary units of length.
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5. Extracted zone for several apertures: general case

We discuss below the total flow produced by the
interaction of two apertures located some distance apart.
Two important situations are distinguished depending on
the selected strategy to carry out mineral extraction. In
some cases, for instance in a continuous extraction process,
it is useful to know the shape of the extracted zone when
the flow takes place in both apertures simultaneously.
However, more often the extraction only occurs first at a
single aperture and then at its nearest neighbor. Naturally,
there is a variety of possible combinations of these
processes that, fortunately, can be easily generalized with
the results described below.

5.1. Extracted zone for two apertures in simultaneous

extraction

To illustrate the first case, we place ourselves on the
workframe of the kinetic model and we take advantage of
the fact that the velocity field obeys a linear partial
differential equation. The linearity of this model simply
implies that a linear combination of the linear equation
solutions is a solution as well. Thus, in this model, the flow
due to several apertures is quite straightforward as it
corresponds to the superposition of the flow produced by
each single aperture. In general this is written as

~v ¼
X
~Li

~vQ0i
ð~x� ~LiÞ, (38)

where~vQ0i
is the velocity field produced by a single aperture

with total flow rate Q0i at the hopper aperture i, which is
centered at position Li. For mining application this result
appears to be very useful since it is enough to characterize
the flow produced by a single aperture to construct the flow
of hoppers of multiple apertures. Naturally, care must be
taken to correctly handle the boundary conditions imposed
at the hopper bottom and at each drawpoint.
To illustrate the general procedure, we calculate the

streamlines and the shape of the extracted zone for the case
of two infinitely narrow apertures in the kinematic
approximation. The velocity field is then the vectorial
superposition of the two contributions. If the apertures are
located symmetrically at positions �L along the horizontal
axis x, the vertical velocity reads

V ¼
�Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDPy
p ½e�ðx�LÞ2=4DPy þ e�ðxþLÞ2=4DPy�, (39)

where we have considered that both apertures have the
same volumetric flow Q. Using Eqs. (23), the streamline
equation reads

dx

dy
¼

1

2y
x� L tanh

xL

2DPy

� �� �
. (40)

Here, the hyperbolic tangent is clearly the interaction term
due to aperture proximity. Although a full analytic
solution of Eq. (40) is difficult, it can be shown that
when x�� L, and y is small, such that the hyperbolic
tangent has saturated to �1, the streamlines are nearly
parabolic centered on each aperture. In the region of
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highest interaction, i.e., x�0 and y relatively large,
(xL=2DPy	 1), Eq. (40) becomes dx=dy ¼ ð1=2yÞ

½x� xL2=2DPy�, whose solution is Cx2 ¼ y expðL2=2DPyÞ,
where C is a constant that labels the streamlines
considered. The approximated solution tells us that in the
interaction region, streamlines are nearly parallel to the
vertical axis. In addition, the transition from parabolas to
straight lines occurs at a vertical distance given by
yk ’ L2=2DP.

Although the analysis above gives us a good idea of the
streamline geometry, it does not provide an explicit
formula for the resulting drawbody. We therefore devel-
oped a simple numerical algorithm to follow the particle
trajectories and thus, retrace the wanted shape. Results are
presented in Fig. 6 for several values of extracted volumes
and two values of DP. At low extracted volumes and
relatively small DP, the extracted zone is just a super-
position of the two isolated drawbodies. However, as the
extracted volume or DP are both increased, the interaction
region grows, producing a flow that is almost vertical in the
symmetry plane between hoppers. The vertical distance for
which the interaction becomes dominant is roughly given
by yint ’ L2=2DP. However, when a hopper has a finite size
aperture, a new scale appears, and we anticipate that the
interaction region dominates at vertical distances
yint ’ ðL�DÞ2=2DP. Experiments performed in a two-
dimensional configuration [12] show that, for the case of
loose packing preparation, the superposition principle
quantitatively accounts for the flows and the observed
extracted zone due to two apertures. A detailed compar-
ison of these results with more experimental findings will be
presented elsewhere.

The generalization of the calculation of the extracted
zone, for finite size apertures in three dimensions, is in
principle direct. However, due to the complexity of the
differential equations encountered,, analytical solutions
remain elusive. Hence, numerical calculations should prove
useful to compute drawbody shapes arising from complex
Fig. 6. Shape of the extracted zone and streamlines for different maximum heig

DP ¼ 0:5. Right panel DP ¼ 1:0. DP and L are expressed in arbitrary units of
configurations. We have given above the basis to perform
such calculations.

5.2. Extracted zone for two apertures when alternating

extractions

The main difficulty to determine the exact shape of the
extracted zone, in the case of alternating extraction, is
because such a zone is not just the superposition of the
isolated drawbodies produced separately by each aperture.
To illustrate the main features of this geometric zone, we
consider only cases in which the flow is radial. Then, we
begin by using the Bergmark–Roos model for the three-
dimensional configuration. Without loosing generality, we
locate the apertures along the y-axis, a distance L apart, at
positions 0 and L, respectively (see the schema in Fig. 7).
The apertures are circular of a radius rD sin yG. As before,
rD is the distance from the origin of coordinates to the
border of the aperture and the maximum angle for which
the material is allowed to flow is yG. y0 and yL are the
respective angles that the vectors r0

! and rL
! (whose

origins locate at each aperture) make with respect to the
vertical. As r0

! and rL
! describe both the same point of

coordinates ðx; y; zÞ, we have, r20 ¼ x2 þ y2 þ z2, r2L ¼ x2 þ

ðy� LÞ2 þ z2 and cos y0 ¼ z=r0, cos yL ¼ z=rL. With
these definitions, the isolated drawbodies are written
as, idr0;L ¼ rD þ ðrmax � rDÞðcos y0;L � cos yGÞ=ð1� cos yGÞ.
Let us assume that the first extraction occurs at the left
hopper during a time t0,which in turn defines the volume of
the isolated drawbody or equivalently its maximum height,
rmaxðt0Þ. Then, during a time t0 all the particles located at
idr0 flow through the left aperture and the flow has
influenced the position of particles initially located inside
the second drawbody and its neighborhood. Therefore, the
problem of determining the global extracted zone, with
respect to the initial location of all fragments, reduces to
calculating the initial location of the fragments that, after a
time t0, move to the boundary of the isolated drawbody
hts of the draw body, ymax=L ¼ 0:5; 2:5; 5; 10; 25:4, with L ¼ 2. Left panel,

length.
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Fig. 7. The extracted zone after two alternate extractions. First, the

particles are extracted from the left draw point, and then from the right

one. The oblique solid line whose inclination is given by yG, produces a

cone of revolution, centered at the origin, that indicates the interaction

region. The thicker line indicates the zone of the isolated drawbody that is

affected by the first extraction. The parameters are: the maximum height

of the isolated extracted zone, rmax ¼ 10, the maximum allowed angle for

displacement, yG ¼ 35�, the radius of each aperture, rD sin yG ¼ 1, and the

separation distance between orifices, L ¼ 5. Distances L, rD and rmax are

expressed in arbitrary units of length.

Fig. 8. The evolution of the extracted zone as decreasing the separation

distance; L ¼ 9; 6; 3, for rmax ¼ 10, rD ¼ 1 and yG ¼ 35�. All distances are

expressed in arbitrary units of length. The figures illustrate projections on

the plane ½x; z�. As in Fig. 7, oblique solid lines which have equal

inclination given by yG, produce revolution cones, centered on 0, that

indicate the interaction regions. Notice that the resulting extracted zone no

longer has the revolution symmetry.
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centered on y ¼ L and whose volume is defined by a
extraction time tL. Thus,

idrL!0ðtLÞ ¼ r0ðt0Þ � ðrmaxðt0Þ � rDÞ
cos y0 � cos yG

1� cos yG

, (41)

where idrL!0ðtLÞ represents simply the form of the isolated
drawbody centered on y ¼ L expressed in terms of the
coordinates centered on y ¼ 0. In general, the formula
above has a direct geometrical interpretation that allows us
to find the interaction region. Indeed, this region is
basically the boundary of the drawbody with origin in y ¼

L displaced in the radial direction with respect to y ¼ 0, a
distance given by, ðrmaxðt0Þ � rDÞ cos y0� cos yG=1� cos yG.

Calculation of the extracted zone for two drawpoints, in
the case of plasticity models (for which the flow is radial as
well), can be performed in a similar manner. The extracted
zone in this case is given by

idr3L!0ðtLÞ ¼ r30ðt0Þ � 3r2DV0t0ðcos y0 � cos yGÞ. (42)

In Fig. 7, we illustrate the procedure to calculate the
shape of the total extracted zone when extractions have
equal volume or equivalently, tL ¼ t0. We begin by noticing
that, when y0XyG the boundary of the total extracted zone
coincides with the corresponding isolated one since the first
flow does not affect such regions. In contrast, the thicker
line represents the area of the isolated drawbody that is
actually affected by the first flow. Predictions from Eq. (42)
are plotted in Fig. 8 for several hopper separations L. For
separation distances that are slightly larger than the width
of an isolated drawbody, drawbodies do not interact and
the resulting extracted zone is equal to the boundary
defined by the two isolated drawbodies. However, as the
separation decreases, due to flow interaction, a nontrivial
form for the extracted zone is observed. Thus, in this
model, the drawboby interaction takes place only if some
portion of the isolated drawbody, centered in L, goes into
the angular section (solid line in Fig. 7) in which the first
flow takes place.

6. Conclusions

In conclusion, drawbodies based on radial flows are
rather insensitive to the details of the model used to predict
the flow as long as the angular dependence of the flow is
introduced correctly. In turn, the kinematic model is well
suited for predicting the flow and, therefore, the drawbody
shapes in the case of loosely packed granulates. In
addition, thanks to linearity, the kinematic model holds
for cases in which the extraction takes place simultaneously
at several apertures. Results from these analyses should be
valuable when optimizing mineral recovery in mining
industry. As a general conclusion, for nonlinear flows
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when simultaneous extraction is desired, a simple analysis
to understand the interaction region can be performed by
assuming that, in first approximation, the superposing
principle holds. Thus, the sum of the velocity fields
resulting from each aperture, considered as isolated, can
be first assumed as a solution for the general flow.
Corrections to this approximation can be evaluated by
inserting the linear solution plus a disturbance into the
general equation governing the flow, if it is available. This
is basically the application of perturbation theory to the
flow problem and will be discussed in a forthcoming
publication. It is worth noting that we have not considered
here hoppers of complex geometry as the ones encountered
in practical applications. However, it can be stated that the
variety of drawbody shapes that might arise from complex
procedures, either in simultaneous or sequential extrac-
tions, can be fully characterized by the knowledge of the
flow taking place at a single aperture. Realistic information
on this matter can be obtained from either model
experiments or in situ observations.
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